Guido van Rossum

Centre for Mathematics and Computer Science
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands
E-mail: guido@cwi.nl or mevax!guido

The program described in this article, AlL—an acronym for Amoeba Interface
Language—is a Remote Procedure Call (RPC) stub generator which greatly
simplifies the use of Amoeba’'s RPC mechanism. From almost-programming-
language-independent function descriptions, it generates all the necessary
code for parameter and return value marshalling in clients and servers. Clients
just need to call a function to invoke a server operation, and server writers only
need to write a function that implements the operation. As an added benefit,
the function descriptions used by AlL are grouped together in classes, as in
Simula or C++. As in those languages, classes can inherit operations from
one or more base classes. Together with Amoeba’s facilities for manipulating
capabilities (bit patterns that are unforgeable references to objects maintained
by servers), AlL provides a completely object-oriented view of a distributed
operating system.

INTRODUCTION

Distributed operating systems differ from classical operating systems by distri-
buting various operating system functions, such as file storage and process exe-
cution, over different machines. This approach allows more efficient operation
ation) and more reliability (by replication of essential functions).

Part of the effect of distribution can also be achieved by linking individual
runnin g its own 0peratm g system, together in a network.

computers, each 1
However, in such a configus 1all
the position 1n the network of the machine on which they are working, and
cannot easily switch to use another machine. Failure of a single machine in
the network is therefore still a major annoyance. In contrast, a good distri-
buted operating system makes the 1ssue of which machine is used for a particu-
lar task completely transparent. It does so by making network communication
the cornerstone of its design, rather than grafting a network interface onto an
existing operating system. A good communication paradigm is therefore of
utmost importance to a distributed system.

In most dlstnbuted operatm g systems,

cuted on a remote machine to resemble o al procedw function) calls.
Most RPC implementations work more or less as foﬂows A client program
calls a stub routine which has the same calling interface (types and order of
parameters and return values) as the remote function that must be executed.
The stub routine marshals (copies) its input parameters into a message buffer,

Copyright © 1989, Stichting Mathematisch Centrum, Amsterdam
Printed in the Netherlands 2477



ope r&UOH 1S com D ECE ed

meter S) Such a too} IS Ca lHed
pilers are used for several
byte—-order proble ms), and to support interface abstraction.
[his paper descnbes AIL, a stub compiler for Am
distributed operating system. Besides doing the jobs that stub compilers
normally do, AIL provides a powerful mechanism to define common subsets of

interfaces in the form of class inh

requcst to a server by callin

trans(&reqhdr, reqbuf, reqgbufsize,
kreplhdr, replbuf, replbufsize).

A server process waits for a request by calling
getreq(&req header, req_buffer, req buffersize)

and sends a reply with the call

__header, repl _buffer, repl buffersize).

that can be used for access rights checking. uffer 1s an array of
memory bytes and is transferred unin terpreted. Am RPC layer locates
the server based on a match (involving a mechanism to prevent forgery dis-

cussed elsewhere [2]) between the ports specified by client and server in their

request headers, and ensures that at most one server gets the request and that
the reply is sent back to the correct client.

In common usage, a server, say a file server or a time server, reco gnizes a
umber of request types: e. g., a file server would support the requests create-
Jile, write-file, read-file, and delete-file, and a time server would supp ort the
requests get-time and set-time. All requests to one server are normall

248



ending an array of N tegers fro m a
requires swappm g the bytes 1n each integer. T ransfer of ﬂoatm g pomt values
between machines poses even bigger problems.. Inclusion of proper data
conversion code is better done mechanicall 1all I 1

not be spotted 1n tests.

DESIGN GOALS

[he AIL stub generator was designed with als nin

® Generate client stubs and server main loops for the majority of server inter-
faces envisioned for Amoeba.

® Support easy incorporation of predefined standard interfaces into specif
interfaces.

® Support clients an d Servers wri

Supp On C en 18 240 i SETVELS TUunNnnin

® No chan ges to the Am oeb a kemel

AIL does not atte T pt to solve th
) N3 inding: the basic binding of cﬁcms to servers is done by Amoeba’s
' equest basis); an additional level of naming 1s

249



Were SU_Ch a mess 1 " aE th ey Weren ‘el

a simple way for applications to save

bi T OVi 1D g
. able’ y et b L1 m nd hence el cien E)

Initially, the idea was to put special markers in C source and preprocess this.

['his soon proved impractical, especially in the light of the multi-lan guage goal,

so 1t was decided to design a language specialized to the specification of RPC

interfaces. Although the combination of features is probably unique, most

language building blocks were borrowed from other languages:

® the lexical elements, source preprocessing mechanism and type system were
borrowed from C (perhaps not the ideal choice, but with the advantage of
compatibility with existing software in the Amoeba project);

® the class concept (althou gh extensively modified) and the function prototype
notation were borrowed from C+ + [3];

® the notion of separate in and out parameters was borrowed from Ada and
Modula-3 [4].

There are good reasons for borrowing language elements when designing a

special-purpose language like this one:

® the advantages and disadvantages of concepts and notations are well under-
stood; ’

® users need little time to learn the new language (assuming they know the
language borrowed from);

® because we chose C’s preprocessor, lexical elements and type system, we can

actually include C definition files to import types that are needed by AIL
interfaces.

CLASSES

The class concept in AIL differs quite a bit from that in C+ +. A class in
AIL can contain only constant and type definitions and function prototypes;

there are no data members. AIL classes specify only public information; there
are no private definitions as in C+ +.

2 B3 A 'ﬂ N »

generated by AIL always return an error code (nor-
ma}ly indicating ‘success’) as their function result, and have a capability as
thel{ first parameter. Thus, AIL function prototypes need not and do not
specify a return type, and the first parameter is represented by a single ‘*’.

E?ch following parameter must be completely specified by listing its transfer
direction, type and name.

® The transfer direction can be ‘in’ (which is the default), ‘out’, or “in out’; it

250




lan guage sup ports mo od ules, like Modul
is that there may be no overloading of fun am ed in dif
faces. A simple convention to prevent name clashes in practice is to prefix all

function nam an abbreviation of their class name, followed
underscore.

The power of the class mechanism lies in the possibility to extend existin
classes by creating derived classes. A derived class has all the properties of its
base class(es), plus any properties added by its own definition. In C++, a
derived class must be derived from exactly one base class; in AIL, a class can
be derived from multiple base classes. This property is called multiple inheri-
tance.

As an example of an application of multiple
faces: a class ‘tty’
and a class ‘window’ implementing create-window and move-window (and prob-
ably others). If we now want to implement a terminal emulator in a window,
the interface to a terminal emulator window should support both the tty and
the window interface. This is easily accomplished by creating a class °tty-
emulator-win inheriting the classes tty and window. Suppose that the tty
and window classes both inherit the class ‘standard’; this is now also inherited
by the new class.

Because AIL only supports inheritance of interface, not inheritance of imple-
mentation, 1t does not need the concept of ‘virtual functions’ present in C+ +.
The ‘virtual’ predicate in C+ + means that derived classes may override the
implementation of that function, and since in AlL each server must provide its
own implementation of an interface anyway, the predicate would add nothing

new.

inheritance, consider two inter-
implementing the operations write-to-tty and read-from-11,,

251



s may refer to oth ATa

aining a vanable number of objects, whose
th can in general only be determined ing the data. For this pur-
am ongst others, the user may prov1dc the names of routines to do th

ual marshallin g for a pmuc ype. 1he most trivial exam ple 1s the C
trin g data type: the library defines a marshall shal characters up to
the terminating zero. For other languages th ming these support
variable-length strings), marshallers must be provided that support the sa
network format. The syntax used to specify marshallers (an option tackcd
onto the typedef syntax) isn’t wonderful, but additional marshallers are rarely

eeded in practice.

Here are some examples of AIL class definitions. These classes do not neces-
sarily correspond to actual classes used in Amoeba. The numeric ranges in
square brackets after the class name are used to generate request codes; for
various reasons AIL cannot be trusted to choose request codes itself.

#include <amoeba.h> /* Defines capability, etc. */

class standard [1000..1999]1 {
std info(*, out char info buffer[buflen:1001,
in int buflen);
std restrict(*, int rights_mask,
out capability restricted cap);
std destroy(¥*);

252



® , char bDbu
int size);

pad % 5 out char bufferlsize

out int size)d:;

};

inherit standard;
b 3 nwc reate(* » int X » int Y » int w Y int h V
out capability win cap);
in_move resize(*, int x, int y, int w, int h);

};

class tty emulator windo
inherit tty, window;
/* No additional features */

[2200..2299]1 <

X,

[HE STUB GENERATOR

AIL works 1n three phases.

@ Phase one reads and checks all class definitions in the input.

@ Phase two determines, for each function of each class, the request and reply
message formats.

® Finally, phase three, instructed by generator directives in the input, writes
source files in the desired language containing interface definitions, client
stubs and/or server code.

The request and reply message formats determined in the second phase are a

function only of the class definitions found in the input, not of the generatcr

directives: if the stub generator used a different message format when directed

to generate stubs for Pascal than when directed to generate C stubs, communi-

cation between clients and servers written in different languages would fail.

SERVER STRUCTURE

Amoeba servers generally create a number of threads, each executing the same
server main loop (get request, process it, put reply). The details of thread
creation are server-specific and not handled by AIL; it only generates the
server main loop itself. For each function in the class that the server is to
implement (including those in base classes), when a request for that specific
function arrives, the server main loop calls a function ‘impl function-name’
with the same parameters as the corresponding client stub, except that the first
parameter (a capability in the client stub) points to the request header, to save

copying a few bytes.

253



ain 1IN terfaccs WOu 7 maintained by a library
nside the client pI Ogl' am. KRath thread in the Chent
- C ssa,bﬁe but expensive since thc data will be copied at least three tim
AIL generate a test in the client stubs for a parti
1l a local implementation routine instead of enga ging in an RPC call
@ For C + + and other class-based languages (Modula-3?), it should be p0351-
ble to generate client stubs adhering to the language’s standard method-

input syntax could be augmented to tell more about the semantics of
the remote functions, like idempotency, so a failed operation can be retried
mmediately.

imstead of returnin g an CIror

For many simple interfaces, AIL generates almost the same code as we would
by hand. AIL-generated code never calls external functions besides user-

pecified marshallers and the RPC primitives, so there is no extra function call
overhead.

However there are a few tricks unk

nown to AIL when determining the
timal king of parameters into header and buffer (e.g., to pack a long int
In two shorts in the header), it does rather conservative error checking, and its
server code always contains byte swapping code in case a request comes from
a client on an ‘other-endian’ machine.

But the byte swapping code is never executed unnecessary: clients send and
receive data in their native byte-order, so the server needs to swap bytes only
if their native byte-order 1s different. All byte swapping is done in the server,
to minimize the code size of the client stubs.

COMPARISON TO OTHER STUB GENERATORS

None of the RPC stub generators mentioned below support classes: each inter-

facc stands completely on its own.

® Sun RPC [5]. This is a stub generator for Sun RPC, which runs on SunOS
(and other derivatives of 4.2 BSD Unix), and melcments RPC on top of
UDP/IP (unreliable datagrams). Like AIL, Sun RPC uses a sPemal-pmpose

language derived mostly from C to specify server interfaces. The language is
less powerful than ours, but directly supports the marshallin

254




i ple 1 en taﬂon i
stubs to interface to an
Vice, f Or ins Lan Cc).. Hium
practice) it is the onl

CONCLUSIONS
HCI' C aI e a few pom ts we have learne

d from our experience in

4 pEN {ime 1o dBSl gl A d
urpose language that 1s just right for your needs.

® (Class-based interface definitions with mu tlple
tion of new mterf aces with a rich fun

Chis leads to:

Ing distributed system should have an RPC stub generator.

And even:

itance.

RPC stub generator should be class-based and support multiple inh

I would hkc to th ank first and foremost Siebren van der Zee, who has wri
the stub generator a hic OWT

gal also contributed to the design. Robbert van Renesse’s enthusiasm for the
idea of a class-based stub compiler when I first proposed it gave me the little
push that was needed to go forward with the project.

REFERENCES

[he design of a capability-
. The Computer Journal 29(4), 289-300.
MUT I3 R. VAN RENESSE (1986). Using sparse
capablhtles In a dlstnbuted opcratmg system. Proc. of the 6th Int. Conf.
on Distributed Computing Systems, Amsterdam, Vrije Universiteit, 558-563.

255




. g B HY & i

D I

256



